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The objectives of the following research were to evaluate the utility of a deformable image registration technique known as
hyperelastic warping for the measurement of local strains in the left ventricle through the analysis of clinical, gated PET image
datasets. Two normal human male subjects were sequentially imaged with PET and tagged MRI imaging. Strain predictions were
made for systolic contraction using warping analyses of the PET images and HARP based strain analyses of the MRI images.
Coefficient of determination𝑅

2 values were computed for the comparison of circumferential and radial strain predictions produced
by each methodology. There was good correspondence between the methodologies, with 𝑅

2 values of 0.78 for the radial strains of
both hearts and from an 𝑅

2
= 0.81 and 𝑅

2
= 0.83 for the circumferential strains. The strain predictions were not statistically

different (𝑃 ≤ 0.01). A series of sensitivity results indicated that the methodology was relatively insensitive to alterations in image
intensity, random image noise, and alterations in fiber structure. This study demonstrated that warping was able to provide strain
predictions of systolic contraction of the LV consistent with those provided by tagged MRI Warping.

1. Introduction

Diagnostic imaging technologies play a vital role in reducing
the morbidity and mortality associated with heart failure,
cardiac ischemia, and infarction. The assessment of regional
left ventricular (LV) function is currently used as a major
diagnostic and prognostic indicator in patients with car-
diovascular disease [1–4]. Single photon emission computed
tomography (SPECT) and positron emission tomography
(PET) are commonly used for evaluation of cardiovascular
disease and can allow for not only evaluation of perfusion, but
with gated acquisitions these nuclear images can also be used
to evaluate global cardiac function measures like ejection
fraction (EF) and regional function measures such as wall
motion and myocardial wall thickening. Local wall motion
and thickening remain the most common methods used for
evaluation of LV regional wall function in the clinical setting.

They are, however, indirect measures of cardiac function.
Deformation in the form of wall strain represents a direct
measurement of tissue elongation and contraction. These
measures provide more information on the functional health
of cardiac tissue than regional wall motion [5–8], allowing for
earlier and more exact diagnoses to be made.

There has been growing interest in the use of deformable
image registration methods for automated segmentation [9,
10] anddeformationmeasurement of the left ventricle directly
from low resolution SPECT images [11–13]. It has been
suggested that these types of models can provide accurate
quantitative measures of cardiac function (EF, deformation,
strain) [11–13] in order to evaluate cardiac function.

Hyperelastic warping is a deformable image registration
method that can determine deformations directly from the
analysis of clinical medical imaging modalities such as
MRI [14, 15], ultrasound [16], and microPET imaging [17].
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The objective of the following study was to perform an initial
comparison of strain predictions provided by hyperelastic
warping of clinical PET images with strain predictions
provided by the analysis of taggedMRI images from the same
individuals. The point strain predictions were compared in
numerous locations throughout the LV walls. Additionally, a
series of studies were conducted to evaluate the sensitivity of
the warping analysis to changes in image intensity level, the
addition of noise to the images, and changes in the assumed
underlying LV fiber structure.

2. Materials and Methods

2.1. Hyperelastic Warping. In hyperelastic warping, the FE
representation of the LV is deformed during the registration
process. The forces responsible for the registration defor-
mation are derived from the differences in image intensity
of two volumetric image data sets. The first of these image
data sets is the reference image, known as the template (𝑇).
This is the starting point in the analysis and represents the
geometry uponwhich the FEmodel is based upon.The forces
responsible for deforming the FE model are functions of the
differences in image intensity between the template image
and one or more target images (𝑆).

2.1.1. Local Image Registration. A brief description of the
theory underlying hyperelastic warping image registration
follows. The deformation map of the registration of the FE
model representation of the template image with the target
image is defined as 𝜑(𝑋) = 𝑥 = 𝑋 + 𝑢(𝑋), where 𝑥 represents
the current (deformed) coordinates corresponding to 𝑋, the
undeformed coordinates, and 𝑢(𝑋) is the displacement field.
𝐹(𝑋) is the deformation gradient which is a function of this
deformation map:

𝐹 (𝑋) =
𝜕𝜑 (𝑋)

𝜕𝑋
. (1)

The image based forces responsible local registration of the
discretized template image (𝑇) with a target image (𝑆) [18, 19]
is defined by an energy term as follows:

𝑈 (𝑋, 𝜑) =
𝜓

2
(𝑇 (𝑋) − 𝑆 (𝜑))

2

, (2)

where𝜓 is a penalty parameter that enforces alignment of the
template model with the target image.

Hyperelastic warping is the process in which an energy
functional is minimized. This energy functional consists of
the total hyperelastic strain energy 𝑊 from the material
model and the image based term (2). The total energy takes
the form:

𝐸 (𝜑) = ∫
𝛽

𝑊 (𝑋, 𝐶)
𝑑V

𝐽
− ∫
𝛽

𝑈 (𝑇 (𝑋) , 𝑆 (𝜑))
𝑑V

𝐽
,

(3)

where 𝐽 = det (𝐹) is the Jacobian and 𝐶 = 𝐹
𝑇
𝐹 is the left

Cauchy-Green deformation tensor. The first term in (3) is
the hyperelastic strain energy which serves to regularize the

registration process. The first variation of this term gives the
weak form of the momentum equations for nonlinear solid
mechanics [20], while the first variation of the functional 𝑈

in (3) gives rise to the following image-based force term:

𝐷𝑈 (𝑋, 𝜑) ⋅ 𝜂 = −𝜓 [(𝑇 (𝑋) − 𝑆 (𝜑))
𝜕𝑆 (𝜑)

𝜕𝜑
⋅ 𝜂] . (4)

This term drives the discretized template deformation
based on the pointwise differences in image intensity (force
magnitude) and the gradients (force direction). Complete
details of this formulation can be found in the following work
[21, 22] as well as its application to the analysis of cardiac
imaging [14, 17, 23, 24].

Hyperelastic warping assumes that a hyperelasticmaterial
model defines the behavior of the material depicted in the
images. In this manner, the FE model serves a dual purpose:
first it is a discretized representation of the template image
used in the generation of the warping forces described
previously. It also represents the LV depicted in the images
due to the realistic constitutive model and material property
definitions defined in the LV model. For this work, the LV
was defined as a transversely isotropic material [17, 24–26]
in order to define the passive mechanics of the LV. Details
of the passive material model and its implementation in
the warping algorithm may be found in the following [21].
Transversely isotropic constitutive models are commonly
used in modeling the left ventricle [27].

2.2. Active Contraction Constitutive Model. In order to reg-
ister the LV from the end-diastolic starting point to the
end-systolic state, a physiologically realistic “time varying
elastance” active contraction model [28, 29] constitutive
model was utilized to contract the template FE model. The
total Cauchy stress tensorT in the fiber direction (unit vector
a) is defined as the sum of the active stress tensor 𝑇

(𝑎)
(a ⊗ a)

and the passive stress tensor generated by the passivematerial
model T(𝑝) as follows:

T = T(𝑝) + 𝑇
(𝑎)

(a ⊗ a). (5)

The active fiber stress tensor 𝑇
(𝑎) is defined as

𝑇
(𝑎)

= 𝑇max
Ca2
0

Ca2
0

+ 𝐸Ca2
50

𝐶
𝑡
, (6)

where 𝑇max is the intracellular calcium concentration and 𝐶
𝑡

governs the shape of the activation curve [29] and is based
on literature values.The length dependent calcium sensitivity
𝐸Ca
50
is governed by the following equation:

𝐸Ca
50

=
(Ca
0
)max

√exp [𝐵 (𝑙 − 𝑙
0
)] − 1

, (7)

where (Ca
0
)max = 4.35 𝜇M is the peak intracellular calcium

concentration, 𝐵 = 4.75 𝜇m−1 governs the shape of the peak
isometric tension-sarcomere length relation, 𝑙

0
= 1.58 𝜇m is

the sarcomere length at which no active tension develops, and
𝑙 is the sarcomere length which is the product of the fiber
stretch 𝜆̃ and the unloaded length 𝑙

𝑟
= 2.04 𝜇m.
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2.2.1. Subject Specific Active Contraction. Rather than rely on
literature values for the active contraction, a subject specific
active contraction methodology was developed and applied
to globally align the LV model with end-systolic image.
The amount of active contraction applied to the models
was governed by the amount of intensity mismatch in the
images themselves. These element based image intensity
differences were averaged over the entire LV mesh. This
average difference in image intensity was used to define 𝐶

𝑡

in

T(𝑎) = Tmax
Ca2
0

Ca2
0

+ 𝐸Ca2
50

𝜆
𝑎
𝐶
𝑡
. (8)

The average image intensity difference given in (9) was used
to define the shape of the active contraction curve for all of the
elements representing the LV wall. 𝜆

𝑎
is a penalty parameter

that enforces alignment of the template model with the target
image as follows:

𝐶
𝑡

=
1

numelems

numelems
∑

𝑖=1

(T (𝑋, 𝜑) − 𝑆 (𝑋, 𝜑)) , (9)

where numelems is the number of elements comprising the
LV. This formulation using the average difference in image
intensities was used rather than the local differences in image
intensities such as is applied in warping forces, in order
to produce a uniform transmural contractile stress T(𝑎). In
this manner, the warping contractile forces are controlled
by the overall registration of the model to the target image
producing subject specific contraction.

2.3. Image Data Sets. Two 3D test cases were used for this
initial evaluation of hyperelasticwarping for determining sys-
tolic deformations using PET images. Two, mid-twenty, male
volunteers were sequentially imaged, with PET and tagged
MRI. The gated PET data were acquired on a CTI/Siemens
ECAT EXACT HR scanner in list mode format using 18F-
fluorodeoxyglucose (

18FDG). Acquisition of emission data
was begun approximately 40 minutes after injection of
the isotope to allow clearance from the blood pool, and
acquisition continued for 20 to 60 minutes. A retrospective
respiratory and cardiac double gating procedure was used to
reconstruct the images into 40msec intervals. To simplify the
analysis, data from only the end-expiration portion of the
respiratory cycle were used. Images were reconstructed into
256 × 256 × 47 voxel volumes using filtered backprojection.
The resulting images were resampled into standard short axis
orientations with dimensions 100 × 100 × 42 voxels (1.5 ×

1.5 × 3.5mm). The left ventricle was the principal feature in
the resulting field of view. A 10–30 minute transmission scan
was acquired prior to injection of the isotope. This scan was
combined with a 60min blank scan to correct for the effects
of attenuation. A normalization file was then used to correct
the emission, transmission, and blank data on a bin-by-bin
basis.

A 1.5 T Siemens scanner was used to obtain the MRI
tagged data of the same patients. Spatial modulation of

Figure 1: Finite element mesh of Heart 1 at the end-systolic state of
the analysis superimposed on the end-systolic PET image. The FE
LV model has 3366 nodes and 2712 elements.

magnetization (SPAMM) was used to create the tags and
acquire data in short-axis planes with each image slice being
synchronized to the 𝑅wave of the EKG signal, and sequential
images were acquired at 40ms intervals. Image data were
formatted into 256 × 256 pixel matrices with a 378 FOV
and 10mm slice separation. The MRI image data sets were
manually coregistered to the corresponding PET images
using rigid body rotations and translations of the images.
Complete details of both the PET andMRI image acquisition
may be found in [30].

2.4. Strain Analyses

2.4.1. Tagged MRI Strain Analysis. The tagged MRI image
data sets were analyzed using the commercially available har-
monic phase (HARP) software package (Diagnosoft HARP,
http://www.diagnosoft.com). Each short axis slice of the
image data sets was analyzed using 2D HARP analysis.
Epicardial, midwall, endocardial, circumferential, and radial
strainmeasurements were determined for 4 regions (anterior,
posterior, septal, and lateral), resulting in 12 radial and 12
circumferential strain measurements per image slice.

2.4.2.Warping Strain Analysis. TheFEbasedwarpingmodels
were given subject specific geometries for the two hearts
using methodology described previously [17, 31]. Briefly, the
3D finite element meshes were created using surfaces based
upon semiautomatic segmentation of the end-diastolic PET
images (template). Each FE mesh had 3366 nodes and 2712
elements (Figure 1).Themodels were assigned realistic mate-
rial properties [26, 32] using the material model components
described previously. The fiber distributions used in the FE
models were defined as −82∘ epicardial to 80∘ endocardial
[33]. The end-diastolic PET image data set was used as the
template image, and the end-systolic PET image was used as
the target image for each case.These time points were chosen
in order to match the tagged MRI data used in the HARP
analyses.

The analysis was run from a time of zero to a time of 1.
These times do not represent the actual time over the cardiac
cycle, rather they represent the end-points of the analysis time
over which the analysis of the images ismade.The time allows
for control of the application of the active contraction stresses
(8) as well as control over the local warping forces in (4)
during the analysis. For the global alignment phase, the active
contraction warping was applied using a linearly increasing
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Heart 1
Validation SNR 8 SNR 4 SNR 1 SNR 0.5 SNR 0.1

Heart 2

Figure 2: Mid ventricular slices of the image data sets used in the validation and SNR 8-SNR 0.1 analyses. The image data sets with an SNR
of 0.1 demonstrate that there remains little or no image information of the LV in the images.

penalty 𝜓
𝑎
in (8) through 2/3 of the analysis (6.7 seconds)

after which it was held constant until the end of the analysis.
The warping penalty 𝜓 in (9) and (11) was defined as linearly
increasing over the course of the entire analysis [17, 31].

2.4.3. Comparison of the Registration Results. Qualitative
assessment of the registration between the warping epi- and
endocardial surfaces and the taggedMRI image data sets was
performed. The surfaces were superimposed upon both the
PET and taggedMRI image data sets using theWarpLab soft-
ware (http://www.mrl.sci.utah.edu/software/warplab). Wa-
rpLab is a freely distributed finite element postprocessing
program that was designed to simultaneously display the FE
models and the corresponding images, allowing for the visual
evaluation of the deformation and registration results.

A quantitative assessment of themethodologieswasmade
by comparing the warping radial and circumferential strain
predictions with the HARP based strain measurements for
the same locations. The comparisons were made using the
point strains at each location for each methodology without
any averaging being made. The coefficient of determination
(𝑅
2
) between the two measurements was determined by

correlating the strains determined by MRI with the strains
predicted by warping. A Bland-Altman analysis was con-
ducted on these strain predictions to assess the amount of
agreement between the methodologies as well as to identify
possible bias in thewarping predictions. A regression analysis
was performed on the Bland-Altman error data in order
to identify trends in the warping predictions. The percent
root mean squared errors (%RMSE) was used to compare
the tagged MRI strain data with the strains predicted by
hyperelastic warping using the tagged MRI data as the Gold
Standard (10). The %RMSE was calculated as follows:

%RMSE = √
1

𝑁nodes

𝑁nodes

∑

𝑖=1

(𝜀tagged − 𝜀Warp)
2

(𝜀tagged)
2

.

(10)

Here, 𝜀tagged represented the strain value in the tagged
analysis, 𝜀warp was the predicted strain value for the node
corresponding to this location in the warping analysis, and
𝑁nodes was the total number of nodes in the elements rep-
resenting the myocardial wall. Additionally, paired student’s
𝑡-tests were used to assess statistical differences in the means
of the strain predictions.

2.5. Sensitivity Studies

2.5.1. Sensitivity to the Addition of Gaussian Image Noise.
A series of sensitivity studies were conducted in order to
evaluate the sensitivity of the strain predictions fromwarping
to the addition of noise to the images being analyzed using
methodology demonstrated in our previous studies [24, 34].
An independent additive noise model [35] was used to mod-
ify the original template and target images. The intensities
of the original template and target images were considered
true images 𝑠(𝑖, 𝑗), where 𝑖 and 𝑗 represent pixel coordinates.
Random noise 𝑛(𝑖, 𝑗) was added to the true images to create
the noisy image 𝐼(𝑖, 𝑗):

𝐼 (𝑖, 𝑗) = 𝑠 (𝑖, 𝑗) + 𝑛 (𝑖, 𝑗) . (11)

The noise was defined by the standard deviation (𝜎
𝑛
) of a

zero mean normal probability distribution for noise image
intensities [35], and 𝜎

𝑖
was the standard deviations of the

image intensities for the template and target images. The
signal to noise ratio (SNR) was defined as

SNR =
𝜎
𝑖

𝜎
𝑛

. (12)

Images having SNRvalues of 8, 4, 1, 0.5, and 0.1were evaluated
(Figure 2). Coefficients of determination and %RMSE were
determined for the warping analysis of these images.

2.5.2. Sensitivity to Changes in Image Intensity. The intensities
of nuclear based images represent the relative uptake of the
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Heart 2

Heart 1

10% 20% 40%

Figure 3: Mid ventricular slices of the images used in the image intensity sensitivity studies. These images represent the 10%, 20%, and 40%
reductions in voxel intensity.

tracer, in this case 18FDG, by the tissue. As the relative uptake
of tracer can vary widely for nuclear imaging studies, a series
of studies were carried out to determine how changes in
the image intensities of the images would affect the warping
strain distributions. The intensities (counts) of the template
and the target image data sets were both reduced by 10%,
20%, and by 40% (Figure 3). Each case was analyzed using
hyperelastic warping, and the strains were compared.

2.5.3. Relative Contribution of the Active Contraction Com-
ponent. The active contractile component of warping is
responsible for the global alignment of the LV model with
the target image. In order to determine the contribution of
the active contraction component of hyperelastic warping to
the overall accuracy of the strain predictions, the validation
study was repeated with the active contraction component
being turned off. No other warping parameters were altered.
Strains were again compared with the validation study.

2.5.4. Effect of Changes in Fiber Distribution. Currently, it is
extremely difficult to determine the fiber distribution of the
LV for a living human subject or animalmodel noninvasively.
Therefore, it is valuable to determine the relative sensitivity
of warping to variations in the transmural fiber distribution,
given that the fiber distribution used in the models will likely
be based upon literature values. In order to study the effects
of changes in the fiber distribution, the baseline transmural

inclination angles of −82, 0, 80 (epi-, mid-, endocardial wall)
used in the validation study were increased and decreased by
5%. This resulted in distributions of −86, 0, 84 and −78, 0,
76.The warping analyses were then repeated for each of these
cases. Only the fiber distributions were altered with no other
analysis parameters being changed. The circumferential and
radial strains were compared with the tagged MRI strains as
described previously.

2.5.5. Effect of Fiber Distribution on the Active Contraction
Component. The effect of changes in the fiber distribution on
the active contraction component alone was made by evalu-
ating the SNR 0.1 image data sets while altering the model
fiber distributions. The SNR 0.1 images contain virtually no
image information being completely made up of Guassian
noise (Figure 2, far right panel). The differences in image
intensities, in this case random noise will, on the element
basis, create small image based forces. The lack of coherent
image gradients means that these image based forces will be
randomly oriented and will not contribute to changing the
configuration of the FE LV model leaving only the active
contraction to alter the LV model. Using these models, the
effect of changes in the fiber distribution on the active
contraction component alone was evaluated by increasing
and decreasing the inclination angles for the SNR 0.1 analysis
by 5% as described previously. The strain predictions from
these cases were compared with the validation study and the
SNR 0.1 analysis with the normal fiber distribution.
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(a) (b) (c)

Figure 4: Registration comparison Heart 1. Warping analysis of Heart 1 indicates that excellent image registration was achieved on this image
data set. The epi- and endocardial surfaces of the warping model correspond with those surfaces in the higher resolution MRI images on the
right (c). (a) End-diastolic images (template) used in the warping analysis, (b) the end-systolic PET (target) images, and (c) the corresponding
end-systolic tagged MRI images. Every fourth slice is displayed.

3. Results

3.1. Comparison of Registration Results. The visual compari-
son of the registered warping epi- and endocardial surfaces
with the end-systolic tagged MRI images indicated that the
analyses achieved excellent image registration for both hearts.
The model epi- and endocardial surfaces for both models
show very good correspondence with these surfaces in the
taggedMRI images (Figures 4(c) and 5(c)).TheFEmodel epi-
and endocardial surfaces are displayed with the PET images
used in the analysis (Figures 4(a), 4(b), 5(a), and 5(b)).

The comparison of the warping strain predictions with
the results of tagged MRI analysis indicated good agreement
between the analysis methods (Figure 6) with 𝑅

2 values
of 0.78 to 0.83. Bland-Altman analyses (Figure 7) of these
results indicated that the warping strain predictions were
lower than the tagged MRI analysis for both the radial
and circumferential directions. In the radial direction there
appears to be a tendency towards greater underestimation
at higher strain values. The average strain results were not
statistically different (𝑃 ≤ 0.01).

3.2. Sensitivity Studies. The results of the sensitivity studies
(Tables 1 and 2) indicate that alterations in fiber distribution,

moderate decreases in image intensity, and the addition of
noise down to an SNR 4 for Heart 1 and SNR 1 for Heart
2 had little effect on the warping predicted strains. The
results indicated that there was little change in the 𝑅

2 values
and the %RMSE for these cases. The error values for the
SNR 1 case of Heart 1 and SNR 0.5 for Heart 2 displayed
a marked degradation of the strain predictions resulting in
large increases in the error measures and decreases in the 𝑅

2

values from the addition of image noise. SNR cases below
these values showed improvement in the error measures.

The removal of the active contraction from the analysis
led to regions of severe misregistration of the FE models
with the end-systolic images. There were several locations
of misregistration on the epicardial surfaces for each short
axis slice. An example of this is given in Figure 8. The
endocardial surfaces of the model simply did not register
the corresponding surfaces shown in the end-systolic tagged
MRI images. The effect upon the strain predictions were
also pronounced with increases in the %RMSE as well as a
degradation in the 𝑅

2 values for both hearts (Tables 1 and 2).
The effect of changes in the fiber distribution on the strain

predictions was significant when active contraction was the
only loading on the FEmodels.The errormeasures (%RMSE)
increased in magnitude in the circumferential direction for
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(a) (b) (c)

Figure 5: Registration comparison Heart 2. Warping analysis of Heart 2 also shows that excellent registration was achieved on this data set.
(a) End-diastolic images used in the warping analysis, (b) the end-systolic PET images, and (c) the corresponding end-systolic tagged MRI
images.

Table 1: Sensitivity results for Heart 1. The sensitivity study
results for the Heart 1 analyses indicate that warping was relatively
insensitive to image noise, moderate decreases in image intensity,
and changes in fiber orientation. An SNR level of 1 (bold) caused
severe degradation of the registration results with large increases
in %RMSE and a reduction of the 𝑅

2 values. The lack of active
contraction in the analysis also resulted in degradation of the error
measures.

Cir. strain Radial strain
%RMSE 𝑅

2 %RMSE 𝑅
2

Validation study 0.098 0.813 0.138 0.780
SNR 8 0.109 0.813 0.122 0.780
SNR 4 0.109 0.811 0.133 0.798
SNR 1 0.236 0.220 0.196 0.210
SNR 0.5 0.280 0.770 0.439 0.790
SNR 0.1 0.131 0.786 0.145 0.750
Reduction in fiber angle (+5%) 0.105 0.813 0.143 0.796
Increase in fiber angle (−5%) 0.116 0.810 0.122 0.800
10% reduction in intensity 0.117 0.820 0.116 0.780
20% reduction in intensity 0.116 0.810 0.139 0.800
40% reduction in intensity 0.129 0.783 0.139 0.790
No active contraction 0.181 0.770 0.191 0.750

Table 2: Sensitivity results for Heart 2. The results of Heart 2
analyses show similar trends to those seen in theHeart 1 analyses. An
SNR level of 0.5 (bold) caused severe degradation of the registration
results also with large increases in %RMSE and a reduction of the 𝑅

2

values.

Cir. strain Radial strain
%RMSE 𝑅

2 %RMSE 𝑅
2

Validation study 0.093 0.830 0.113 0.780
SNR 8 0.095 0.824 0.113 0.773
SNR 4 0.099 0.820 0.113 0.773
SNR 1 0.099 0.821 0.113 0.804
SNR 0.5 0.329 0.094 0.412 0.080
SNR 0.1 0.114 0.790 0.124 0.770
Reduction in fiber angle (+5%) 0.092 0.830 0.110 0.780
Increase in fiber angle (−5%) 0.092 0.840 0.100 0.790
10% reduction in intensity 0.092 0.850 0.100 0.800
20% reduction in intensity 0.095 0.840 0.100 0.790
40% reduction in intensity 0.096 0.830 0.110 0.790
No active contraction 0.156 0.638 0.214 0.612
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Figure 6:The comparisons of strains for taggedMRI analysis and the warping analysis show relatively good agreement with the comparisons
of the circumferential strains (a) having 𝑅

2 values of 0.81 for Heart 1 and 0.83 for Heart 2. The comparisons of the radial strains (b) had 𝑅
2

values of 0.78 for both hearts.

Heart 1 with changes in fiber distribution. However, the
%RMSE showed little change for the radial direction forHeart
1 compared with the normal fiber SNR 0.1 results (Table 3).
The 𝑅

2 values for Heart 1 cases showed slight decreases
for both of these strain measures. In contrast, the active
contraction fiber distribution analysis for Heart 2 showed
increased %RMSE for both the circumferential and radial
directions compared with the normal fiber SNR 0.1 case. The
𝑅
2 values also showed large decreases in value.

4. Discussion

The qualitative and quantitative evaluations of this initial
validation study indicated that warping analysis of clinical
PET images can provide point strain predictions consis-
tent with those determined by tagged MRI analysis. The
results show distinct trends in the comparison of the strain
methodologies. The warping strain estimates showed a slight
tendency towards underestimation for the circumferential
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Figure 7: The Bland-Altman analysis comparing the warping strain results with those of the tagged MRI analysis. The warping strain
predictions underestimated the strain results compared with the tagged MRI strain predictions. Warping showed little bias in the
circumferential direction for both hearts with the linear regression analysis (dashed lines) showing relatively flat slopes in the circumferential
strain.
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Figure 8: Illustrating misregistration of images when active contraction is not used. Heart 1 (a) shows anterior-laterial as well as septal
misregistration for the epicardial surface. Heart 2 (b) shows posterior-lateral and septal misregistration for the epicardial surface.

direction compared with the tagged MRI analysis results
as indicated by the slope of the regression lines being less
than 1.0 in Figure 6. This tendency was more pronounced
for the radial direction predictions where the amount of
underestimation increased as indicated by the slopes of

the regression lines being smaller than the values for the
circumferential direction.

The radial strain results were not surprising as there are
only two to three tags across the wall (Figures 4(c) and 5(c)).
Two to three tags provide a relatively low resolution for the



10 International Journal of Biomedical Imaging

Table 3: Effect of changes in fiber distribution on the active
contraction component alone for Hearts 1 and 2. Changes in
inclination angle had a direct effect upon the strain predictions for
the SNR 0.1 cases, particularly in the circumferential direction strain
predictions.

Cir. strain Radial strain
%RMSE 𝑅

2 %RMSE 𝑅
2

Heart 1
Validation study 0.098 0.813 0.138 0.780
SNR 0.1 normal fiber 0.131 0.786 0.145 0.750
SNR 0.1 + 5% IA 0.212 0.745 0.144 0.735
SNR 0.1 − 5% IA 0.160 0.753 0.142 0.737

Heart 2
Validation study 0.093 0.830 0.113 0.780
SNR 0.1 normal fiber 0.114 0.790 0.124 0.770
SNR 0.1 + 5% IA 0.156 0.630 0.214 0.600
SNR 0.1 − 5% IA 0.247 0.302 0.331 0.500

IA: inclination angle.

prediction of the radial strains, and this tends to homogenize
the radial strain results (Figures 6 and 7). In the warping
analysis there are 10 sample points spread transmurally across
the wall where the images are sampled. These are spaced
approximately 0.5–1.5mm apart depending upon where in
the mesh the elements are located thus providing a substan-
tially higher spatial resolution.

The sensitivity studies indicate that warpingwas relatively
insensitive to changes in the fiber distribution as well as being
insensitive to modest decreases in image intensities. The
addition of moderate amounts of additive noise also showed
little effect upon the predicted strains. However, a SNR level
of 1 for Heart 1 and 0.5 for Heart 2 produced large increases in
%RMSE.These errors resulted fromnoise induced distortions
of the finite element meshes. However, as more noise was
introduced (lower SNR values), the error measures improved
due to the decrease and elimination of the intensity gradi-
ents in the images. These high SNR cases resulted in the
magnitude of the image forces being decreased, but more
importantly, the forces become randomly oriented leaving
the active contraction as the primary loading on the models.
These results also suggest that using a realisticmaterial model
can provide a reasonable strain distribution within regions
where little image intensity information is available. The
extreme example of this situationwas the SNR 0.1 cases where
no image information depicting the LVwas left in the images.

The analysis of the SNR 0.1 image data sets allowed for the
evaluation of the active contraction component without any
other loading on the models. As expected, the effects of the
fiber distribution were pronounced in these cases (Table 3)
as all of the loading responsible for LV deformation is
transmitted along the fibers. These results were in contrast to
the sensitivity study where the fiber distribution was altered
for the analysis of the validation image data sets.These studies
indicated that alterations in fiber distribution produced little
change in the errormeasures (Tables 1 and 2). Taken together,
these results suggest that the active contraction forces only
provide enough contraction to approximately align the LV

model with the end-systolic image data set, and it is local
warping forces that produce the deformations necessary for
registration of the FE model with the target image.

The work presented in this paper is the first time point
strain predictions were evaluated using clinical PET images
compared with clinical tagged MRI image data sets. The
results are consistent with previous warping studies. For
example, warping analysis of cine-MRI images of the LV com-
pared well with tagged MRI image analysis [36] for regional
strains (average septal, lateral, posterior, and anterior) in the
same patient. A comparison of warping strain predictions
for the medial collateral ligament (MCL) undergoing flexion
based upon the analysis of cineMRI images showed excellent
agreement with strain surface marker measurements [15]. A
previous, nonclinical, validation study for the use of warping
with cardiac microPET imaging indicated that warping anal-
ysis strain predictions showed excellent agreement with the
LV strains predicted by a forward finite element model that
was used to create a set of synthetic target microPET image
data sets used in the analysis [17].

Limitations. Obtaining deformation information from nucle-
ar based images presents problems that are unique to these
imaging modalities. PET and SPECT images are based upon
the uptake in tissue of nuclear tracers imaged over relatively
long periods of time (up to 60 minutes for these studies)
resulting in average geometric or spatial representations of
the myocardium. Patient movement, gating errors during
PET acquisition and changes in heart rate during this time
span could all contribute to uncompensated blurring that
might affect surface representations. Furthermore, the images
themselves have relatively low spatial resolutions compared
with other modalities such as the tagged MRI images used
for comparison in the present study. One might expect that
the geometries portrayed in the images and the relatively
low spatial resolution of PET would compromise the image
registration. Resolution and distortions due to motion issues
would then manifest in the inability of the warping method-
ology to produce registered models that correspond to the
geometry portrayed in the higher resolution MRI images.
However, the present study demonstrated that warping could
produce good image registration (Figures 4 and 5) without
the introduction of obvious artifacts that would have had a
negative effect upon the strain predictions.

Another possible source of error in the analysis of clinical
PET images is that the relative uptake of tracer documented
in the images will vary from patient to patient. In the present
study, the histograms for the images (Figure 9) indicate that
the dynamic range of the images of Heart 1 was far greater
than that of Heart 2.The images of Heart 1 had a substantially
higher mean intensity value as well as a greater standard
deviation for the full 3D image data set than those of Heart
2. These differences in dynamic range did not appear to
affect warping strain predictions compared to the taggedMRI
analysis. PET based image intensity distributions may also
vary over the cardiac cycle. The template image of Heart 1
had amean intensity value of 91.2 for the histogram compared
with the mean intensity histogram value in the target of 86.4
(Figure 10).This represents a 6%drop in the average intensity.
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Figure 9: The two PET image data sets analyzed in the present study represent very different intensity distributions (full volumetric image
sets). The histogram for Heart 1 (a) has a higher mean intensity value and standard deviation than those of Heart 2 (b) image data set.
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Figure 10: The mean image intensity of the template images in both Heart 1 (a) and Heart 2 (b) had higher mean intensity values than the
final target image data sets.
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In contrast, the images of Heart 2 had mean image intensity
values of 14.5 in the template image and 12.9 for the target
image, so an approximately 10% decrease in image intensity.
The analysis results do not show any effect of the change in
image intensity over the cardiac cycle. These results confirm
those of our previous work [17] where intensity differences
between the template and target image data sets did not
affect the strain predictions. These results support the idea
that systolic contraction “brightening” due to partial volume
effects may have little or no effect on the strain predictions.

Warping can produce 3D Greene-Lagrange strain fields,
rather than just the in-plane strain predictions as was pro-
vided by the tagged MRI analysis used in the present study.
One of the primary limitations of 2D, in-plane, analysis
methods is that it neglects to account for the effects of through
plane motion of the heart. In a given image plane, the tissue
seen and being analyzed at the reference configuration (end-
diastole) is not the same tissue that is seen in this same image
plane at end of the analysis (end-systole). As the base moves
toward the apex, the tissue moves through the image plane.
Through plane motion likely contributed to the differences
in the strain predictions between the two methods.

One of the primary limitations of the present study was
that only two image data sets were available for analysis. A
larger number of image data sets would have allowed for
greater confidence in the results. However, even with just the
two image data sets, the results suggest that the point strain
predictions made from the warping analyses were consistent
with those obtained using tagged MRI analysis.

Another limitationwas that the registration analyses were
made on images of normal hearts.The analysis of cardiac PET
imageswith perfusion defects from ischemia or infarction has
direct clinical relevance for the use of this technology. This
being the case, a possible problem with hyperelastic warping
would be that the active contraction component could cause
an underestimation of the strains within regions having
moderate perfusion defects. This would be the case where
the average intensity difference in the images (12), that drives
the active contraction component of warping, would be the
primary loading on the elements within the defect rather
than the forces derived from the local differences in image
intensity (11). This issue can be addressed in two ways. First,
the active contraction penalty value used to approximately
register the model with the target images was the minimum
that provided reasonable alignment as subjectively judged by
the user. Therefore, this methodology will likely be adequate
for slight to moderate perfusion defects. Second, the analysis
of images that contain one or more low perfusion regions
will likely require use of additional methods in order to
obtain accurate strain predictions within these segments.
This would involve the identification of the elements that are
within the perfusion defect(s) in order to alter the analysis
parameters. Software has been developed that can be used
to directly identify the elements that lie within a perfusion
defect [37].Thematerial properties of these elements can then
be altered, such that no active contraction is applied within
these regions.

The noise component added to the images for the SNR
analyses did not represent the type of noise found in PET

imaging.The noise found in reconstructed PET data does not
have a Gaussian distribution [38]. Additionally, the additive
noise model that was applied to the validation PET images
was overly simplistic, as there are numerous sources for noise
in PET imaging, including the noise associated with the
numerous corrections that are applied (randoms, attenuation,
etc.) as well as the noise associatedwith the image reconstruc-
tion process itself (e.g., filter back projection). Each of these
sources of noise introduces its own noise distribution to the
overall noise in the images. It would have been difficult in the
present study to reproduce the complex processes associated
with the noise generation found in PET imaging.

5. Conclusions

The present study has indicated that hyperelastic warping
was able to provide reasonable strain predictions through
the analysis of clinical PET images depicting systolic con-
traction that were consistent with those obtained using the
HARP analysis of tagged MRI images. The sensitivity studies
indicated that the methodology was relatively insensitive to
moderate alterations in image intensity and image noise as
well as alterations in the assumed fiber structure. Warping
analysis of PET images appears to be able to provide a
relatively robust method to obtain estimates of wall strains
in the human LV.
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